Основы матричных вычислений Весенний семестр 2021

Лекция 10: Умножение матриц и вычислительная устойчивость

Максим Рахуба

Высшая Школа Экономики

Матричное умножение

 ${
m Meto}$ д Штрассена BLAS

Устойчивость и обусловленность

Машинные числа Вычислительная устойчивость Обусловленность Матричное умножение: сложность

$$C = AB - Ceometate: 2n^3 + O(n^2)$$

$$namet6: O(n^2)$$

rompo en Soutpee, ren za O(N3)?

Матричное умножение Метод Штрассена

Устойчивость и обусловленность

Машинные числа Вычислительная устойчивость Обусловленность

Матричное умножение: метод Штрассена¹

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} , \quad \text{Aij}, \quad \text{Bij} \quad \text{withing}$$

"Строка на столбец":

$$\begin{split} &C_{11} = A_{11}B_{11} + A_{12}B_{21} \\ &C_{12} = A_{11}B_{12} + A_{12}B_{22} \\ &C_{21} = A_{21}B_{11} + A_{22}B_{21} \\ &C_{22} = A_{21}B_{12} + A_{22}B_{22} \end{split}$$

8 умножений и 4 сложения

Штрассен:

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_2 = (A_{21} + A_{22})B_{11}$$

$$M_3 = A_{11}(B_{12} - B_{22})$$

$$M_4 = A_{22}(B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{12})B_{22}$$

$$M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$C_{11} = M_1 + M_4 - M_5 + M_7$$

$$C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4$$

$$C_{22} = M_1 + M_3 - M_2 + M_6$$

7 умножений и 18 сложений

 $^{^1\}mathrm{Strassen},$ V. (1969). Gaussian elimination is not optimal. Numerische mathematik, 13(4), 354-356. (https://link.springer.com/content/pdf/10.1007/BF02165411.pdf)

Матричное умножение: метод Штрассена

$$M(N) = 7 M(\frac{N}{2}) = 7.7 M(\frac{N}{4}) = 7 = \frac{\log_2 N}{2}$$

$$= N \frac{\log_2 N}{2} \approx 2.81$$

$$= N \frac{\log_2 N}$$

6

Матричное умножение: метод Штрассена

Матричное умножение: метод Штрассена
$$\begin{bmatrix}
C_1 & C_2 \\
C_3 & C_4
\end{bmatrix} = \begin{bmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{bmatrix} \begin{bmatrix}
B_1 & B_2 \\
B_3 & B_4
\end{bmatrix}$$

$$C_1 = A_1 B_1 + A_2 B_3$$

$$C_2 = \sum_{i,j=1}^{4} x_{i,j} A_i B_j$$

$$C_2 = A_1 B_2 + A_2 B_4 =$$

$$C_{2} = A_{1} B_{2} + A_{2} B_{4} = 0$$

$$C_{3} = A_{3} B_{1} + A_{4} B_{3} \qquad X_{1,:,:} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C_{4} = A_{3} B_{2} + A_{4} B_{4} \qquad \vdots$$

$$X_{kij} = \sum_{d=1}^{p} V_{id} V_{jd} V_{kl}$$

$$C_{x} = \sum_{d=1}^{q} V_{kd} \left(\sum_{i=1}^{q} U_{id} A_{i} \right) \cdot \left(\sum_{j=1}^{q} V_{jd} B_{j} \right)$$

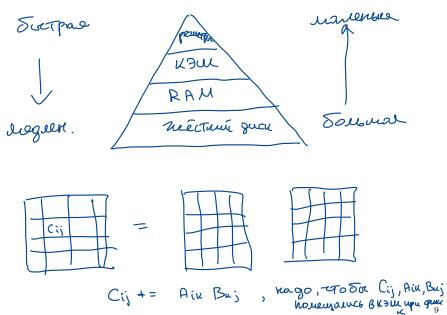
Матричное умножение: метод Штрассена

- ▶ Мировой рекорд [J. Alman, V.V. Williams, $2020]^2$: $< \mathcal{O}(n^{2.37286})$. Но большая константа в $\mathcal{O}(\cdot)$.
- ▶ Неизвестен минимальный показатель α в числе операций $\mathcal{O}(n^{\alpha})$ (очевидно, $\alpha \geq 2$).
- Алгоритм Штрассена не часто используется на практике. В недавней статье³ (2016) утверждается, что алгоритм Штрассена может быть эффективен и для небольших матриц.

²https://arxiv.org/pdf/2010.05846.pdf

³http://jianyuhuang.com/papers/sc16.pdf

Матричное умножение: иерархия памяти



Матричное умножение

Метод Штрассена

BLAS

Устойчивость и обусловленность

Машинные числа Вычислительная устойчивость Обусловленность

Оригинальная версия BLAS: 1979 год на fortran. С того времени переписан множество раз, но интерфейс функций стандартизован.

Разделяют 3 уровня операций в BLAS (далее $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$):

 $\mathcal{O}(n)$ flops, $\mathcal{O}(n)$ memops:

$$\mbox{(AXPY)} \quad \boldsymbol{y} \leftarrow \alpha \boldsymbol{x} + \boldsymbol{y}, \quad \boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}^n, \quad \boldsymbol{\alpha} \in \mathbb{F},$$

Уровень 2

 $\mathcal{O}(n^2)$ flops, $\mathcal{O}(n^2)$ memops:

(MV)
$$y \leftarrow \alpha Ax + \beta y$$
, $x, y \in \mathbb{F}^n$, $A \in \mathbb{F}^{n \times n}$, $\alpha, \beta \in \mathbb{F}$

обращение треугольных матриц, ранг-1 апдейт матрицы, и т.д.

Уровень 3

 $\mathcal{O}(n^3)$ flops, $\mathcal{O}(n^2)$ memops:

(MM)
$$C \leftarrow \alpha AB + \beta C$$
, $A, B, C \in \mathbb{F}^{n \times n}$, $\alpha, \beta \in \mathbb{F}$

Надо стараться записывать алгоритмы через матричное произведение.

Оригинальная версия BLAS: 1979 год на fortran. С того времени переписан множество раз, но интерфейс функций стандартизован.

Разделяют 3 уровня операций в BLAS (далее $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$):

Уровень 1

 $\mathcal{O}(n)$ flops, $\mathcal{O}(n)$ memops:

(AXPY)
$$y \leftarrow \alpha x + y$$
, $x, y \in \mathbb{F}^n$, $\alpha \in \mathbb{F}$,

Уровень 2
$$\mathcal{O}(n^2) \text{ flops}, \ \mathcal{O}(n^2) \text{ memops}:$$

$$\text{(MV)} \quad \mathbf{y} \leftarrow \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{y}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{F}^n, \quad \mathbf{A} \in \mathbb{F}^{n \times n}, \quad \alpha, \beta \in \mathbb{F},$$

обращение треугольных матриц, ранг-1 апдейт матрицы, и т.д.

Уровень 3

 $\mathcal{O}(n^3)$ flops, $\mathcal{O}(n^2)$ memops:

(MM)
$$C \leftarrow \alpha AB + \beta C$$
, $A, B, C \in \mathbb{F}^{n \times n}$, $\alpha, \beta \in \mathbb{F}$

Надо стараться записывать алгоритмы через матричное произведение.

Оригинальная версия BLAS: 1979 год на fortran. С того времени переписан множество раз, но интерфейс функций стандартизован.

Разделяют 3 уровня операций в BLAS (далее $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$):

Уровень 1

 $\mathcal{O}(n)$ flops, $\mathcal{O}(n)$ memops:

(AXPY)
$$y \leftarrow \alpha x + y$$
, $x, y \in \mathbb{F}^n$, $\alpha \in \mathbb{F}$,

Уровень 2

 $\mathcal{O}(n^2)$ flops, $\mathcal{O}(n^2)$ memops:

(MV)
$$y \leftarrow \alpha Ax + \beta y$$
, $x, y \in \mathbb{F}^n$, $A \in \mathbb{F}^{n \times n}$, $\alpha, \beta \in \mathbb{F}$,

обращение треугольных матриц, ранг-1 апдейт матрицы, и т.д.

Уровень 3
$$\mathcal{O}(n^3)$$
 flops, $\mathcal{O}(n^2)$ memops: $\mathcal{O}(\mathcal{N}) = \mathcal{O}(\mathcal{N}) = \mathcal{O}($

Надо стараться записывать алгоритмы через матричное произведение.

Названия операций

ightharpoonup DOT: $x^{\top}y$

► AXPY: $y \leftarrow \alpha x + y$

 $MV: y \leftarrow \alpha Ax + \beta y$

► MM: $\mathbf{C} \leftarrow \alpha \mathbf{AB} + \beta \mathbf{C}$

R: $\mathbf{A} \leftarrow \alpha \mathbf{x} \mathbf{y}^{\top} + \mathbf{A}$ (добавить ранг-1)

....

Типы матриц

- ► GE general
- ▶ GB general band
- ► SY symmetric
- ► SB symm. band
- ► TR triangular
- ..

Precision:

- ► S single
- ▶ D double
- ► C single complex
- ► Z double complex

Пример: ZGEMM (матрично-матричное умножение с произвольными плотными матрицами из комплексных чисел в двойной точности)

Релевантные пакеты программ

- LAPACK (Linear Algebra PACKage): матричные факторизации, решение линейных систем, SVD, Использует BLAS.
- ▶ Intel MKL (Math Kernel Library): оптимизованные под Intel процессоры BLAS и LAPACK.
- ОрепBLAS: оптимизированный BLAS. Базируется на GotoBLAS, который долгое время был рекордсменом (К. Гото написал GotoBLAS во время саббатикала в 2002).
- ATLAS (Automatically Tuned Linear Algebra Software): автоматически оптимизирует BLAS под конкретную систему.
- ▶ cuBLAS (CUDA BLAS): имплементация для GPU от NVIDIA.

Линейно-алгебраические операции в scipy и numpy – врапперы для функций из BLAS и LAPACK. В Anaconda Python Distribution (версия 2.5 и старше) и MATLAB по умолчанию используется MKL.

Матричное умножение

Метод Штрассена BLAS

Устойчивость и обусловленность

Машинные числа

Вычислительная устойчивость Обусловленность

Машинные числа

mantucca $\mathbb{FP} = \left\{ \pm \left(\frac{d_1}{h} + \frac{d_2}{h^2} + \dots + \frac{d_m}{h^m} \right) b^e, \quad d_i = 0, 1, \dots, b - 1, \quad e_{\min} \le e \le e_{\max} \right\}$

- ightharpoons $\mathbb{FP} \subset \mathbb{R}$ конечное множество машинных чисел
- ▶ $b \in \mathbb{N}$ основание (base) арифметики
- ▶ m ∈ N длина мантиссы
- ▶ $e \in \mathbb{Z}$ порядок (exponent) конкретного $x \in \mathbb{FP}$
- d_i ∈ {0,..., b − 1} разряды числа x ∈ \mathbb{FP}

Машинные числа

$_{\rm IEEE^4\ cтандарт}$ 754

Был принят в 1985 для унификации представления чисел и операций с ними.

Точность	b	m	e_{max}	e_{min}
single	2	23	127	-126
double	2	52	1023	-1022

- ▶ Задает правило округления $\mathfrak{fl}: \mathbb{R} \to \mathbb{FP}$.
- Вадает правило для разрешения неопределенностей. Например, для ⁰/₀.
- ▶ Арифметические и другие операции.
- ▶ ..

⁴Institute of Electrical and Electronics Engineers

Машинные числа: округление

Для операции округления

$$\mathfrak{fl}\colon\mathbb{R}\to\mathbb{FP}$$

можно записать

$$\mathfrak{fl}(x) = x(1+\epsilon), \quad |\epsilon| \le \epsilon_{\text{machine}},$$

где $\epsilon_{
m machine}$ (машинная эпсилон) — точная верхняя грань для $|\epsilon|$. То есть мы "привязали" определение $\epsilon_{
m machine}$ к \mathfrak{fl}^5 .

Фундаментальная аксиома машинной арифметики

Для любых $x,y\in\mathbb{FP}$ существует $\epsilon:|\epsilon|\leq\epsilon_{\mathrm{machine}},$ такое что для любой операции ор $\in\{+,-,\times,/\}$ выполняется:

$$fl(x \text{ op } y) = (x \text{ op } y)(1 + \epsilon), \quad |\epsilon| \le \epsilon_{\text{machine}}$$

Для вычислений на компьютере, построенном по принципу этой аксиомы, будет удобно строить теоретический анализ ошибок округления.

 $^{^5}$ Для "школьного" $\mathfrak{f}\mathfrak{l}$ – отбрасывания лишних цифр (truncation), $\epsilon_{\mathrm{machine}}=\frac{1}{2}b^{1-m}$. В литературе также встречается $\epsilon_{\mathrm{machine}}=b^{1-m}$.

Устойчивость и обусловленность

Перейдем к обсуждению двух ключевых понятий численного анализа: обусловленность и устойчивость.

Важно помнить

- 1. Устойчивость определяется для алгоритма.
- 2. Обусловленность определяется для задачи.

Матричное умножение

Метод Штрассена BLAS

Устойчивость и обусловленность

Машинные числа

Вычислительная устойчивость

Обусловленность

Вычислительная устойчивость кончир.

Пусть задана задача $f\colon X\to Y$ и $\tilde f\colon X\to Y$ – некоторый алгоритм ее решения.

Прямая устойчивость

Алгоритм обладает свойством прямой устойчивости (forward stability), если

$$\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = \frac{\xi}{\mathcal{O}} \underbrace{\epsilon}_{\text{machine}}.$$

Сложно анализировать (нужно следить за каждой операцией) и нужно учитывать, что при большой ошибке "плохой" может оказаться задача, а не алгоритм.

Обратная устойчивость

Алгоритм обладает свойством обратной устойчивости, если

$$ilde{f}(x) = f(ilde{x})$$
 для некоторого $ilde{x} \colon rac{\| ilde{x} - x\|}{\|x\|} = \mathcal{O}(\epsilon_{ ext{machine}}).$

То есть, мы хотим заменить вычисленную величину как точное вычисление с возмущенными данными. Подход удобен для анализа (обратный анализ ошибок). Будем использовать в след. лекциях.

Вычислительная устойчивость

(Смешанная) устойчивость

Алгоритм является устойчивым, если

$$\dfrac{\| ilde{f}(x)-f(ilde{x})\|}{\|f(ilde{x})\|}=\mathcal{O}(\epsilon_{\mathrm{machine}})$$
 для некоторого $ilde{x}\colon\dfrac{\| ilde{x}-x\|}{\|x\|}=\mathcal{O}(\epsilon_{\mathrm{machine}}).$

Вычислительная устойчивость

bockward stable $\begin{cases}
x + y, \text{ rge} & \hat{x} = x (1+\epsilon) \\
y = y (1+\epsilon)
\end{cases} \Rightarrow \frac{|\hat{x} - x|}{|x|} = |\epsilon| \le \epsilon_{\text{modifie}}$ $\frac{|x + y|}{|x + y|} = |\epsilon| \le \epsilon_{\text{modifie}} \Rightarrow \text{ forward}$ $\frac{|x + y|}{|x + y|} = |\epsilon| \le \epsilon_{\text{modifie}} \Rightarrow \text{ forward}$ $\frac{|x + y|}{|x + y|} = |\epsilon| \le \epsilon_{\text{modifie}} \Rightarrow \text{ forward}$

Матричное умножение

Mетод Штрассена BLAS

Устойчивость и обусловленность

Машинные числа Вычислительная устойчивость Обусловленность

Обусловленность

$$f: X \to X$$
 $f(X + \Delta X) = f(X) + f(X) \Delta X + O(11\Delta X | X)$
 $||f(X + \Delta X) - f(X)||$
 $||f(X + \Delta X) - f(X)||$
 $||f(X)||$
 $||f(X)||$

Обусловленность

forward-err =
$$\frac{\|f(x) - f(x)\|}{\|f(x)\|} = \frac{\|f(x) - f(x)\|}{\|f(x)\|} \le \frac{\|f(x) - f(x)\|}{\|f(x) - f(x)\|} \le \frac{\|f(x) - f(x)\|}{\|f$$

Литература

- ▶ N. Higham "Accuracy and Stability of Numerical Algorithms", SIAM, 2002.
- \blacktriangleright Тыртышников, Е.Е. Матричный анализ и линейная алгебра, Москва, Физматлит, 2007. 477 с
- ▶ Тыртышников Е. Е. Методы численного анализа. Издательский центр Академия Москва, 2007. – 320 с.
- Trefethen, L. N., & Bau III, D. (1997). Numerical linear algebra. (Vol. 50). Siam. Philadelphia.